A NOVEL SYNTHESIS OF 2-AMINO- AND 2-HYDROXYCARBAZOLES

Jan Bergman and Rene Carlsson

Department of Organic Chemistry, Royal Institute of Technology

S-100 44 Stockholm 70, Sweden

Thermolytic cyclization of the readily available compound $\frac{1}{2}$ gives ellipticine ($\frac{2}{2}$) in good yield and an isomer, assigned structure $\frac{3}{2}$, in various amounts ($\frac{1}{2}$ ref 1).

In order to prove the structure of 3 and to establish a more convenient synthesis of this potentially interesting compound (cf ref 2 where the azaanalogue 4 is described) the following rapid, high-yield route was developed.

^{*} This compound also deserves interest as a desazaanalogue of 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b] indole, which recently has been reported to be highly mutagenic.

The condensation ($\underline{5} \rightarrow \underline{6}$) could also be effected with $\text{CH}_3\text{COCH}_2\text{CN}$ (for similar condensations see ref 3). Other 2-alkylindoles gave analogues to $\underline{6}$, whereas indole itself, not unexpectedly $\underline{4}$ gave the 2:1 condensation product $\underline{12}$.

The cyclization 5 ($\underline{6} \rightarrow \underline{7}$) was carried out with NaH in diphenyl ether at 220° (24 hrs) whereby the anion of the exocyclic tautomer of $\underline{6}$ ($\underline{6a}$) cyclized to $\underline{6b}$, which subsequently aromatized into $\underline{7}^6$ through a hydrogen shift.

$$\underline{\underline{6}} \longrightarrow \begin{bmatrix} CH_3 \\ \underline{N} \\ \underline{C}N \end{bmatrix} \longrightarrow \underline{\underline{7}}$$

The Skraup cyclization ($\underline{7} \rightarrow \underline{3}^7$, yield $\sim 70 \%$) was carried out with glycerol, nitrobenzene, sulfuric acid and acetic acid (the latter as a moderating agent).

Attempts to cyclize $\underline{6}$ to $\underline{7}$ with HBr in chloroform resulted in a cyclization to the 4-position in the indole ring yielding compound $\underline{8a}^8$ which was stable towards KOH/H₂O (100° , 24 hrs.) indicating that the tautomeric equilibrium $\underline{8a} \neq \underline{8b}$ is greatly shifted to the left. The hydroxy analogue to $\underline{8a}$, $\underline{9}$, could similarly be obtained from the ester $\underline{10a}$ by cyclization promoted by hot (100°) polyphosphoric acid.

$$B_2$$
 B_2
 B_3
 B_4
 B_4

The condensation product $\underline{10a}$, readily prepared³ from 2-methylindole and ethyl acetoacetate, could be cyclized (NaH, 220°) to $\underline{13}^{9}$. This route to 2-hydroxycarbazoles appears to be general and e.g. 2-hydroxy-3-methylcarbazole ($\underline{14}$), precursor of girinimbine ($\underline{15}$) and several related carbazole alkaloids¹⁰, is formed when OHC-CH(CH₃)-CO₂Et is condensed with 2-methylindole followed by cyclization. It is necessary to work at low temperatures (0°) to obtain the ester $\underline{10b}$. At higher temperatures the 2:1 product $\underline{11}^{14}$ is formed.

Interestingly, bis(2-methyl-3-indolyl)-dimethylmethane ($\underline{18}$) appeared as a sideproduct in the cyclization ($\underline{10} \rightarrow \underline{13}$). This can be explained in terms of decarbethoxylation and dealkenylation of $\underline{10}$ followed by an addition of $\underline{17}$ to $\underline{16b}$ (\underline{cf} refs 11 and 12).

REFERENCES AND NOTES

- 1. J. Bergman and R. Carlsson, Tetrahedron Letters, 4663 (1977).
- A. Da Settimo, G. Primofiore, V. Santerini, G. Biagi and L. D'Amico, <u>J. Org. Chem.</u>, <u>42</u>, 1725 (1977).
- 3. (a) D. N. Robinson, Ph. D. Thesis, Univ. of Minnesota, Minneapolis (1959).
- (b) W. E. Noland and D. N. Robinson, <u>J. Org. Chem.</u>, <u>22</u>, 1134 (1957).
 4. This is another example showing that 2-substituted indoles give normal 3-vinylindoles,
- whereas indole itself condenses further yielding a 2:1 adduct, in this case 1,1-bis(3-indo-lyl)-1-cyanomethyl ethane ($\underline{12}$), m.p. 180° . MS: 300(13), 299(21), 260(13), 259(100), 182 (14), 142(17), 129(22), 117(14), 115(15), and 40(37). Only peaks greater than 10 % of the base peak are listed. Cf J. Bergman and R. Carlsson, J. Het. Chem., 9, 833 (1972).
- (a) For related enamine-nitrile cyclizations see ref. 5b, and earlier papers in this series(b) A. I. Meyers, A. H. Reine, and R. Gault, <u>J. Org. Chem.</u>, <u>34</u>, 698 (1968).
- M.p. 161-163^O. MS: 211(15), 210(100), 209(31), 208(6), 195(13), 180(6), 167(10), and 105 (10). Only peaks greater than 5 % of the base peak are listed.
- 7. M.p. 212-213°. MS: 247(17), 246(100), 245(35), 233(26), 232(29), and 123(13). Only peaks greater than 10 % of the base peak are listed.
- 8. M.p. 93-95°. The structure is consistent with the ¹H-NMR, IR and MS data. (cf ref 13 where similar compounds are discussed).
- 9. M.p. 192-194°. MS: 198(10), 197(67), 196(24), 173(39), 168(10), 167(12), 159(13), 158(100), 130(17), and 103(12). Only peaks greater than 10 % of the base peak are listed.
- 10. Y. Oikawa and O. Yonemitsu, Heterocycles, 5, 233 (1976) and refs. therein.
- 11. J. Bergman, Acta Chem Scand., 26, 970 (1972).
- 12. J. Bergman and J.-E. Bäckvall, Tetrahedron, 31, 2063 (1975).
- 13. G. M. Buchan and A. B. Turner, J. Chem. Soc., Perkin I, 2257 (1975).
- 14. M.p. 158-160°. MS: 274(23), 273(100), 257(10), 243(24), 229(16), 198(13), 170(18), 168(13), 144(10), 131(36), 130(49), 129(12), and 128(10). Only peaks greater than 10 % of the base peak are listed.
- 15. J. L. Fox, Chem. & Eng. News, Dec 12, 34 (1977).
- 16. H. Akimoto, A. Kawai, H. Nomura, M. Nagao, T. Kawachi, and T. Sugimura, <u>Chemistry Letters</u>, 1061 (1977).

(Received in UK 24 July 1978; accepted for publication 18 August 1978)